If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25m^2+85m^2+360m=0
We add all the numbers together, and all the variables
110m^2+360m=0
a = 110; b = 360; c = 0;
Δ = b2-4ac
Δ = 3602-4·110·0
Δ = 129600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{129600}=360$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(360)-360}{2*110}=\frac{-720}{220} =-3+3/11 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(360)+360}{2*110}=\frac{0}{220} =0 $
| 9a/9=180/9 | | 4x-2.25=84 | | -26=h/29 | | 42=d-7 | | 4g=3,2 | | Y=95+x | | f+43.5=77 | | y+3=10.95 | | 5x+8=20x-7 | | 55•x=5 | | 12m^2+30m+12=0 | | 4=2,5t | | 2x+3=9+1-7 | | -3x-x=8-4 | | -9+2x5=7+x | | h/29=-13 | | -15=-4+x | | n+526=-323 | | 10+8x=19-4x | | 2r+1=r+-3 | | x+3=10.95 | | r-795=-542 | | 0+x=1-6 | | 125=y+3.8 | | v+417=203 | | 648÷gg=24. | | p/18=23 | | -3+x-1=-20+8 | | 3^2•3+6=x | | h/22=22 | | 3=6+p/6 | | y/7=43 |